Inverting Schmitt trigger Rev. 04 — 17 July 2007

General description 1.

74HC1G14 and 74HCT1G14 are high-speed Si-gate CMOS devices. They provide an inverting buffer function with Schmitt trigger action. These devices are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The HC device has CMOS input switching levels and supply voltage range 2 V to 6 V.

The HCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

The standard output currents are half those of the 74HC14 and 74HCT14.

Features 2.

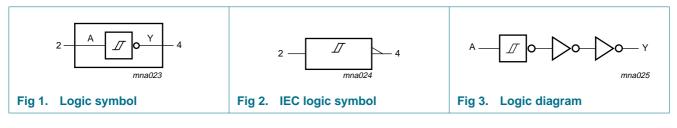
- Symmetrical output impedance
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- SOT353-1 and SOT753 package options
- Specified from –40 °C to +125 °C

Applications 3.

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

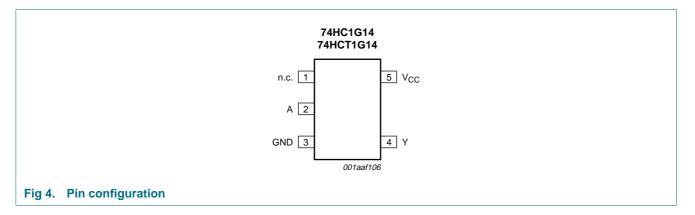
Ordering information 4.

Type number	Package							
	Temperature range	Name	Description	Version				
74HC1G14GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package;	SOT353-1				
74HCT1G14GW			5 leads; body width 1.25 mm					
74HC1G14GV	–40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753				
74HCT1G14GV								



Inverting Schmitt trigger

5. Marking


Table 2. Marking codes	
Type number	Marking
74HC1G14GW	HF
74HCT1G14GW	TF
74HC1G14GV	H14
74HCT1G14GV	T14

6. Functional diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
n.c.	1	not connected
А	2	data input
GND	3	ground (0 V)
Y	5	data output
V _{CC}	5	supply voltage

8. Functional description

Table 4.Function table

H = *HIGH* voltage level; *L* = *LOW* voltage level

Input	Output
A	Y
L	Н
Н	L

9. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). [1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC}$ + 0.5 V	-	±20	mA
I _{OK}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	-	±20	mA
I _O	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±12.5	mA
I _{CC}	supply current		-	25	mA
I _{GND}	ground current		-25	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \text{ to } +125 \ ^{\circ}C$	[2] _	200	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] Above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	74HC1G14			74HCT1G14			Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

Inverting Schmitt trigger

11. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V). All typical values are measured at T_{amb} = 25 °C.

Symbol	Parameter	Conditions	-40	°C to +8	35 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	
For type	74HC1G14	·						
V _{OH}	HIGH-level output	$V_I = V_{IH} \text{ or } V_{IL}$						
	voltage	$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	V
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	V
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	5.9	6.0	-	5.9	-	V
		I_{O} = -2.0 mA; V_{CC} = 4.5 V	4.13	4.32	-	3.7	-	V
		I_{O} = -2.6 mA; V_{CC} = 6.0 V	5.63	5.81	-	5.2	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	voltage	I_{O} = 20 μ A; V_{CC} = 2.0 V	-	0	0.1	-	0.1	V
		I_{O} = 20 μ A; V_{CC} = 4.5 V	-	0	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	V
		I_{O} = 2.0 mA; V_{CC} = 4.5 V	-	0.15	0.33	-	0.4	V
		I_{O} = 2.6 mA; V_{CC} = 6.0 V	-	0.16	0.33	-	0.4	V
lı	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0$ V	-	-	1.0	-	1.0	μΑ
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 6.0 \ V \end{array}$	-	-	10	-	20	μA
Cı	input capacitance		-	1.5	-	-	-	pF
V _{T+}	positive-going	see Figure 7 and 8						
	threshold voltage	$V_{CC} = 2.0 V$	0.7	1.09	1.5	0.7	1.5	V
		$V_{CC} = 4.5 V$	1.7	2.36	3.15	1.7	3.15	V
		$V_{CC} = 6.0 V$	2.1	3.12	4.2	2.1	4.2	V
V _{T-}	negative-going	see Figure 7 and 8						
	threshold voltage	$V_{CC} = 2.0 V$	0.3	0.60	0.9	0.3	0.9	V
		$V_{CC} = 4.5 V$	0.9	1.53	2.0	0.9	2.0	V
		$V_{CC} = 6.0 V$	1.2	2.08	2.6	1.2	2.6	V
V _H	hysteresis voltage	see Figure 7 and 8						
		$V_{CC} = 2.0 V$	0.2	0.48	1.0	0.2	1.0	V
		$V_{CC} = 4.5 V$	0.4	0.83	1.4	0.4	1.4	V
		$V_{CC} = 6.0 V$	0.6	1.04	1.6	0.6	1.6	V
For type	74HCT1G14							
V _{он}	HIGH-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	voltage	$I_{O} = -20 \ \mu A; V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	V
		$I_{O} = -2.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.13	4.32	-	3.7	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	V
		I_{O} = 2.0 mA; V_{CC} = 4.5 V	-	0.15	0.33	-	0.4	V
lı	input leakage current	V_{I} = V_{CC} or GND; V_{CC} = 5.5 V	-	-	1.0	-	1.0	μΑ

74HC_HCT1G14_4

Inverting Schmitt trigger

Symbol	Parameter	Conditions	–40 °C to +85 °C			_40 °C t	–40 °C to +125 °C	
			Min	Тур	Max	Min	Max	
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	10	-	20	μA
ΔI _{CC}	additional supply current	per input; V _{CC} = 4.5 V to 5.5 V; V _I = V _{CC} - 2.1 V; I _O = 0 A	-	-	500	-	850	μA
CI	input capacitance		-	1.5	-	-	-	pF
V _{T+}	positive-going threshold voltage	see Figure 7 and 8						
		$V_{CC} = 4.5 V$	1.2	1.55	1.9	1.2	1.9	V
		$V_{CC} = 5.5 V$	1.4	1.80	2.1	1.4	2.1	V
V _{T-}	negative-going	see Figure 7 and 8						
	threshold voltage	$V_{CC} = 4.5 V$	0.5	0.76	1.2	0.5	1.2	V
		$V_{CC} = 5.5 V$	0.6	0.90	1.4	0.6	1.4	V
V _H	hysteresis voltage	see Figure 7 and 8						
		$V_{CC} = 4.5 V$	0.4	0.80	-	0.4	-	V
		V _{CC} = 5.5 V	0.4	0.90	-	0.4	-	V

Table 7. Static characteristics ... continued

12. Dynamic characteristics

Dynamic characteristics Table 8.

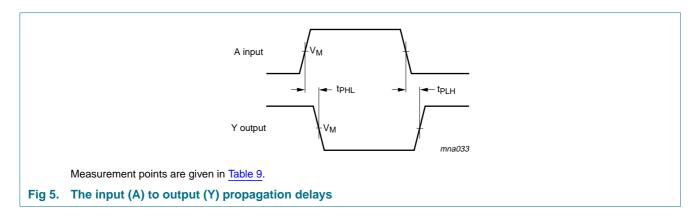
GND = 0 V; $t_r = t_f \le 6.0$ ns; All typical values are measured at $T_{amb} = 25 \circ C$. For test circuit see Figure 6

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max]
For type	74HC1G14	'							
t _{pd}	propagation delay	A to Y; see Figure 5	<u>[1]</u>						
		$V_{CC} = 2.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	25	155	-	190	ns
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	12	31	-	38	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	10	-	-	-	ns
		$V_{CC} = 6.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	11	26	-	32	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	[2]	-	20	-	-	-	pF
For type	74HCT1G14								
t _{pd}	propagation delay	A to Y; see Figure 5	<u>[1]</u>						
		$V_{CC} = 4.5 \text{ V}; \text{ C}_{L} = 50 \text{ pF}$		-	17	43	-	51	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	15	-	-	-	ns
C _{PD}	power dissipation capacitance	V_{I} = GND to V_{CC} – 1.5 V	[2]	-	22	-	-	-	pF

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

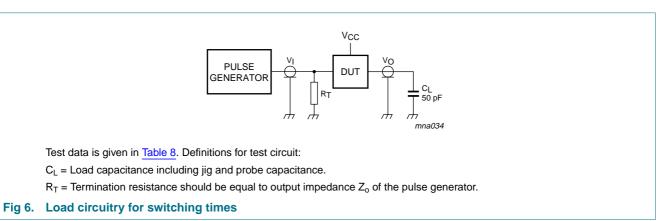
[2] C_{PD} is used to determine the dynamic power dissipation P_D (μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:


 f_i = input frequency in MHz; f_o = output frequency in MHz

 C_L = output load capacitance in pF; V_{CC} = supply voltage in Volts

 $\Sigma~(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs


Inverting Schmitt trigger

13. Waveforms

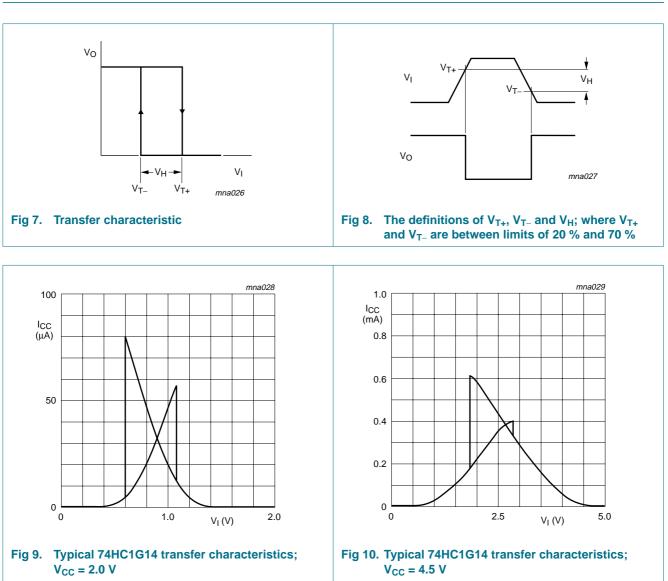
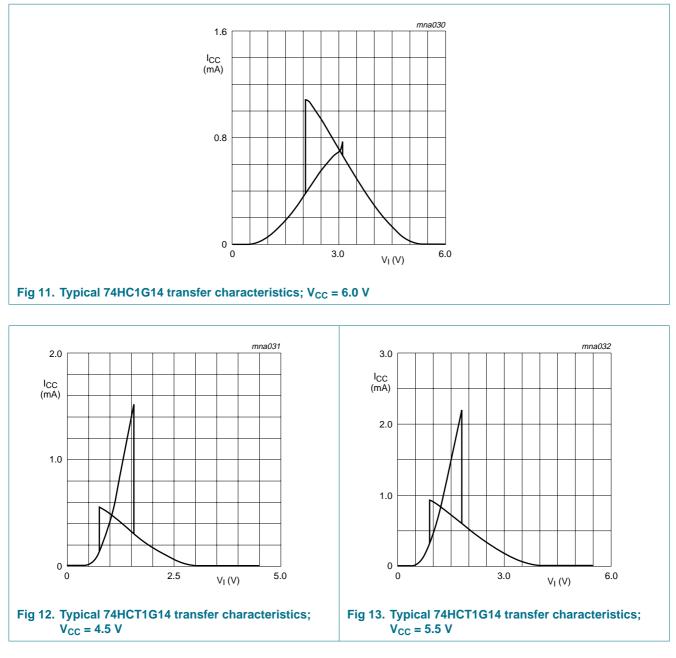


Table 9.Measurement points

Type number	number Input		Output
	VI	V _M	V _M
74HC1G14	GND to V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
74HCT1G14	GND to 3.0 V	1.5 V	$0.5\times V_{CC}$

Inverting Schmitt trigger



14. Transfer characteristics waveforms

NXP Semiconductors

74HC1G14; 74HCT1G14

Inverting Schmitt trigger

15. Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $\mathsf{P}_{\mathsf{add}} = \mathsf{f}_{\mathsf{i}} \times (\mathsf{t}_{\mathsf{r}} \times \Delta \mathsf{I}_{\mathsf{CC}(\mathsf{AV})} + \mathsf{t}_{\mathsf{f}} \times \Delta \mathsf{I}_{\mathsf{CC}(\mathsf{AV})}) \times \mathsf{V}_{\mathsf{CC}}$

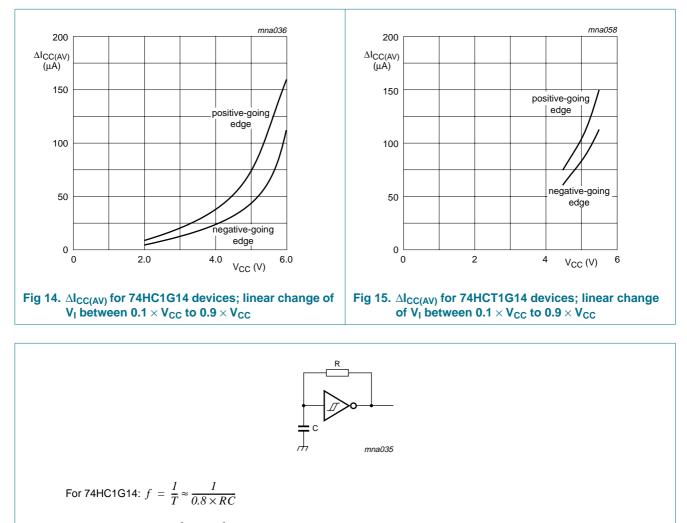
Where:

 P_{add} = additional power dissipation (μ W)

 $f_i = input frequency (MHz)$

 t_r = rise time (ns); 10 % to 90 %

Inverting Schmitt trigger

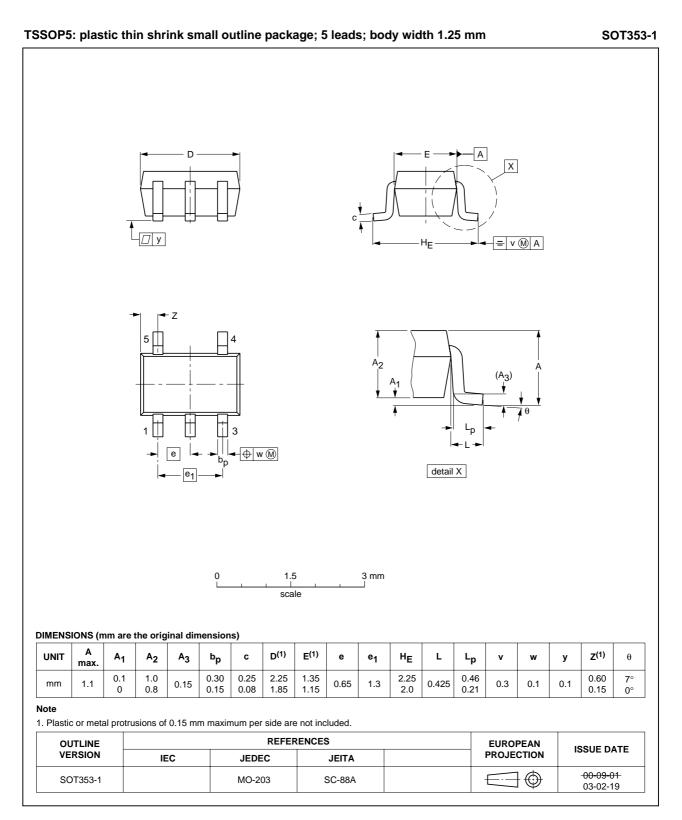

 t_f = fall time (ns); 90 % to 10 %

 $\Delta I_{CC(AV)}$ = average additional supply current (µA)

 $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Figure 14 and 15.

74HC1G14 and 74HCT1G14 used in relaxation oscillator circuit, see Figure 16.

Remark: All values given are typical unless otherwise specified.



For 74HCT1G14:
$$f = \frac{l}{T} \approx \frac{l}{0.67 \times RC}$$

Fig 16. Relaxation oscillator using 74HC1G14 and 74HCT1G14

Inverting Schmitt trigger

16. Package outline

Fig 17. Package outline SOT353-1 (TSSOP5)

Inverting Schmitt trigger

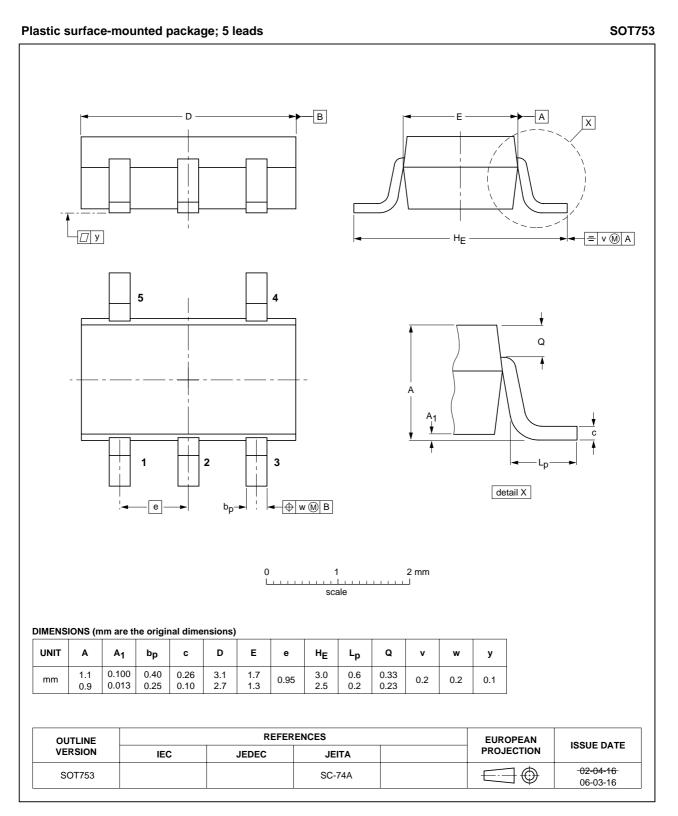


Fig 18. Package outline SOT753 (SC-74A)

17. Abbreviations

Table 10. Abbreviations					
Acronym	Description				
DUT	Device Under Test				
TTL	Transistor-Transistor Logic				

18. Revision history

Table 11.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
74HC_HCT1G14_4	20070717	Product data sheet	-	74HC_HCT1G14_3			
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 						
	 Legal texts 	s have been adapted to the r	new company name whe	ere appropriate.			
	 Package S 	OT353 changed to SOT353	-1 in <u>Table 1</u> and <u>Figure</u>	<u>17</u> .			
	 Quick Refe 	erence Data and Soldering s	ections removed.				
	Section 2 ^c	'Features" updated.					
74HC_HCT1G14_3	20020515	Product specification	-	74HC_HCT1G14_2			
74HC_HCT1G14_2	20010302	Product specification	-	74HC_HCT1G14_1			
74HC_HCT1G14_1	19980805	Product specification	-	-			

19. Legal information

19.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

19.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

NXP Semiconductors

74HC1G14; 74HCT1G14

Inverting Schmitt trigger

21. Contents

founded by

PHILIPS

1	General description 1
2	Features 1
3	Applications
4	Ordering information 1
5	Marking 2
6	Functional diagram 2
7	Pinning information 2
7.1	Pinning 2
7.2	Pin description 2
8	Functional description 3
9	Limiting values 3
10	Recommended operating conditions 3
11	Static characteristics 4
12	Dynamic characteristics 5
13	Waveforms 6
14	Transfer characteristics waveforms7
15	Application information 8
16	Package outline 10
17	Abbreviations 12
18	Revision history 12
19	Legal information 13
19.1	Data sheet status 13
19.2	Definitions 13
19.3	Disclaimers 13
19.4	Trademarks 13
20	Contact information 13
21	Contents 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 17 July 2007 Document identifier: 74HC_HCT1G14_4